G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., CHEMISTRY

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
IV	PART-III	CORE	U21CH407	PHYSICAL CHEMISTRY-II

Date & Session: 07.11.2025/AN Time: 3 hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.		
CO1	K1	1.	Which one of the following is an extensive property?		
			a) mass b) viscosity c) refractive index d) heat capacity		
CO1	K2	2.	The inversion temperature Ti=		
			a) 3a/Rb b) 2a/Rb c) 4a/3b d) 2a/πb		
CO2	K1	3.	HS H" 21.Tb is known as		
			a) Entrophy rule b) Trouton's rule		
			c) both a and b d) state function		
CO2	K2	4.	In an isothermal process is constant.		
			a) T b) V c) P d) both b and c		
CO3	K1	5.	According to law of mass action, the rate of a chemical reaction is proportional		
			to		
			a) active reagent b) active mass c) concentration d) pressure		
CO3	K2	6.	In heterogeneous equilibrium the reactants and products are in		
			a) same phase b) liquid phase c) solid phase d) different phase		
CO4	K1	7.	The amount of NaOH used for the preparation of 1 litre of 0.1N solution is		
			a) 40g b) 20g c) 4g d) 2g		
CO4	K2	8.	Nicotine in water system has		
			a) upper CST b) lower CST c) both a and b d) distillation		
CO5	K1	9.	Which one of the following is a strong electrolyte		
			a) NaCl b) NH ₄ OH c) CH ₃ COOH) Na ₂ CO ₃		
CO5	K2	10.	The pH of pure water is		
			a) 7.8 b) 7.0 c) 14 d) 13		
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$		
CO1	КЗ	11a.	Illustrate intensive and extensive properties with examples.		
CO1	КЗ	11b.	(OR)		
001	KO	110.	Interpret the relation between Cp and Cv.		

CO2	КЗ	12a.	Interpret the physical significance of entropy in terms of molecular disorder
			and energy dispersal.
			(OR)
CO2	КЗ	12b.	Define entropy. Explain why entropy is considered a state function.
CO3	K4	13a.	Analyze the key differences between reversible and irreversible reactions.
			(OR)
CO3	K4	13b.	Compare homogeneous and heterogeneous equilibria using the law of mass
			action.
			action.
CO4	K4	14a.	Distinguish between ideal and non-ideal solutions using Raoult's law.
			(OR)
CO4	K4	14b.	Differentiate between nematic, smectic, and cholesteric liquid crystals based on
			molecular arrangement and physical properties.
			molecular arrangement and physical properties.
CO5	K5	15a.	Critically assess the use of Kohlrausch's law in calculating the equivalent
			conductance of weak electrolytes.
			(OR)
CO5	K5	15b.	Evaluate the limitations of Debye-Hückel-Onsager theory.
			Evaluate the initiations of Debye-Hucker-Onsager theory.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$
CO1	К3	16a.	State the first law of thermodynamics and apply it to derive the expression for internal energy change. (OR)
CO1	К3	16b.	Derive the expression for the Joule-Thomson coefficient in terms of thermodynamic properties.
CO2	K4	17a.	Differentiate between spontaneous and non-spontaneous processes. (OR)
CO2	K4	17b.	For an ideal gas, analyze how entropy changes with temperature and volume.
CO3	K4	18a.	Using Le-Chatelier's principle, analyze the effect of increasing pressure on a gaseous equilibrium.
CO3	K4	18b.	(OR) Compare the application of Le-Chatelier's principle to homogeneous and heterogeneous equilibria.
CO4	K5	19a.	Evaluate how temperature control can influence solubility and phase separation in lower CST systems. (OR)
CO4	K5	19b.	Critically evaluate Raoult's law's assumptions in concentrated or non-ideal solutions?
CO5	K5	20a.	Evaluate the relationship between ionic mobility and viscosity of the solvent using Walden's rule.
CO5	K5	20b.	(OR) Evaluate the relative merits and limitations of Hittorf's method.